Southeast Cattle Advisor Marketing School | March 8th

Dr. Dennis Hancock

Extension Forage Specialist Crop and Soil Sciences – UGA

Forage Needed – Forage Provided

Forage Productivity Differs Throughout the Year

Quality Differences in the Major Forage Species

The Relationship between Fiber (NDF) and Dry Matter Intake (DMI)

Fiber (NDF) Level

The Relationship between Fiber (NDF) and Dry Matter Intake (DMI)

Georgia's Stocker Forages High Quality Forage Systems

Georgia's Stocker ForagesHigh Quality Forage Systems

- A. NE Tall fescue + Clover (Upper Pied.)
 - Spring Only
- B. Winter Annual Grasses (& Legumes?)
 - Sodseeded
 - A. Ryegrass Hay/Baleage
 - Supplementation

Georgia's Stocker ForagesHigh Quality Forage Systems

- A. Winter Annual Grasses (& Legumes!)
 - Sodseeded or Prepared Ground
- B. Tifton 85 Bermudagrass
- C. Summer Annuals (distant 3rd)
- A. Ryegrass Hay/Baleage
- + Supplementation

Efficiencies of Grazing and Mechanized Harvest

Method	Efficiency
Grazing	
Continuous Stocking	30-40%
Slow Rotation (3-4 paddocks)	50-60%
Moderate Rotation (6-8 paddocks)	60-70%
Strip Grazing	70-80%

Efficiencies of Grazing and Mechanized Harvest

Method	Efficiency	
Grazing		
Continuous Stocking	30-40%	
Slow Rotation (3-4 paddocks)	50-60%	
Moderate Rotation (6-8 paddocks)	60-70%	
Strip Grazing	70-80%	
Mechanical		
Hay	30-70%	
Silage	60-85%	
Green Chop	70-95%	

 When evaluating grazing research, look at ADG, Gain/acre, Grazing Time, and Stocking Rate simultaneously.

Effect of Tall Fescue and the Endophyte on Stocker Production

	ADG	Gain	Stocking Rate	Grazing Time
	(lbs/hd/d)	(lb/acre)	(hd/acre)	(days)
Fall				
Jesup E+	1.5	137	1.5	63
Jesup E-	2.3	211	1.5	63
Jesup NE	2.1	188	1.5	63
GA 5 NE	2.2	209	1.5	63

In the fall, tall fescue is either "Boom or Bust."

Parish, 2001. University of Georgia Ph.D. Dissertation.

Effect of Tall Fescue and the Endophyte on Stocker Production

	ADG	Gain	Stocking Rate	Grazing Time
	(lbs/hd/d)	(lb/acre)	(hd/acre)	(days)
Fall				
Jesup E+	1.5	137	1.5	63
Jesup E-	2.3	211	1.5	63
Jesup NE	2.1	188	1.5	63
GA 5 NE	2.2	209	1.5	63
Spring				
Jesup E+	0.8	119	1.6	91
Jesup E-	2.2	313	1.6	91
Jesup NE	1.8	251	1.6	91
GA 5 NE	2.2	308	1.6	91

Parish, 2001. University of Georgia Ph.D. Dissertation.

Effect of Tall Fescue, Endophyte, and White Clover on Stocker Production in the Spring

	ADG	Gain
	(lbs/hd/d)	(lb/acre)
E+	1.10	126
NE	→ 1.83	→ 186
E+ & WC	1.60	150
NE & WC	→ 2.61	→ 252

Jesup Tall Fescue and Durana White Clover. 3-yr trial. Eatonton, GA. Hill, Andrae, and Bouton (unpublished data)

Winter Annual Forage Systems

Overseeding Winter Annuals into Bermuda

- Ryegrass (Annual)
 Arrowleaf clover
- Rye
- **Oats**
- Wheat
- Triticale

- Crimson clover
- Red clover*

Winter Annual Forage Quality

		Total	
Species	Crude Protein	Digestible Nutrients	Annual Yield*
		%	lbs DM/acre
Ryegrass	10-20	56-74	10,630
Oats	8-14	55-70	7,100
Wheat	8-14	52-70	7,110
Rye	8-14	50-70	4,850
Arrowleaf	14-17	56-75	3,470
Crimson	14-16	57-75	3,570

Quality ranges are approximate and are highly dependant upon forage maturity at grazing/harvest. Yields are 3-yr averages from GA and AL.

Winter Annual Forage Distribution

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Winter Annuals: When and How Much

Effect of Winter Annual Mixture on Beef Production

	ORG	RG	RRG	TRG	WRG
ADG (lbs/hd/d)					
Winter	1.19	0.73	1.39	1.11	1.20
Spring	2.45	2.60	2.39	2.07	2.37

Beck et al., 2007. J. Anim. Sci. 85:536-544 (SW Arkansas, Avg. of 2 yrs)

Effect of Winter Annual Mixture on Beef Production

	ORG	RG	RRG	TRG	WRG
ADG (lbs/hd/d)					
Winter	1.19	0.73	1.39	1.11	1.20
Spring	2.45	2.60	2.39	2.07	2.37
Gain (lb/acre)	253	239	281	219	256

Beck et al., 2007. J. Anim. Sci. 85:536-544 (SW Arkansas, Avg. of 2 yrs)

Effect of Winter Annual Mixture on Beef Production

	ORG	RG	RRG	TRG	WRG
ADG (lbs/hd/d)					
Winter	1.19	0.73	1.39	1.11	1.20
Spring	2.45	2.60	2.39	2.07	2.37
Gain (lb/acre)	253	239	281	219	256
Cost of Gain (\$/lb)	\$0.29	\$0.28	\$0.25	\$0.39	\$0.28
Net Return (\$/acre)	\$110	\$106	\$144	\$56	\$115

Beck et al., 2007. J. Anim. Sci. 85:536-544 (SW Arkansas, Avg. of 2 yrs)

Winter Annual Forage Systems

Winter Annual Forage Systems

Efficiencies of Grazing and Mechanized Harvest

Method	Efficiency	
Grazing		
Continuous Stocking	30-40%	
Slow Rotation (3-4 paddocks)	50-60%	
Moderate Rotation (6-8 paddocks)	60-70%	
Strip Grazing	70-80%	
Mechanical		
Hay	30-70%	
Silage	60-85%	
Green Chop	70-95%	

Winter Annual Forage: Ryegrass Cost per ton of <u>INTAKE</u>

Beef Production on Selected Winter Annual Regimens vs. No Winter Annual

Treatment	N Added	Added Grazing	ADG	Gain/a cre
	(lbs/ac per yr)	(d/yr)	(lbs/hd/d)	(lbs)
No Annuals	100	0	1.57	293
Ryegrass	150	53	1.76	422
Arrowleaf + Crimson	0	24	1.94	410
Rye + Arrowleaf + Crimson	100	81	1.92	560

Hoveland et al., 1978. Agron. J. 70:418-420.

Stocker Performance on Rye and Rye-Based Mixtures – Eatonton, GA 2010

Treatment	Grazing Period	Stock Rate	ADG	Gain
	(days)	(hd/a)	(lbs/hd/d)	(lbs/a)
Rye Only	83	1.87	2.73	421
+ Wheat	83	1.96	2.57	412
+ A. Ryegrass	134	1.60	1.92	409
+ Crimson + Arrowleaf	129	1.51	2.29	444

Hancock et al., Unpublished data.

Stocker Performance on Rye and Rye-Based Mixtures – Eatonton, GA 2010

Treatment	Pasture Cost of Gain	Ending Beg. Value Value		Value of Gain
	(\$/lb of gain)	(\$.	/hd/a)	(\$/lb/a)
Rye Only	\$0.410	\$1,626	\$1,159	\$367
+ Wheat	\$0.440	\$1,674	\$1,318	\$356
+ A. Ryegrass	\$0.520	\$1,444	\$1,084	\$360
+ Crimson + Arrowleaf	\$0.415	\$1,412	\$1,015	\$398

Hancock et al., Unpublished data.

Forage Productivity Differs Throughout the Year

Stocker Steer Performance on Alfalfa

Forage Allowance	Stocking Density	ADG	Gain/ acre	Grazing Days
	Hd/ac	lbs/hd/d	lbs	days
High	1.05	2.08	264	128
Medium	1.50	1.66	295	183
Low	2.35	1.38	387	286

Bates et al., 1996. J. Prod. Ag. 9:418-423. (Avg. of 3 yrs: 1989, 90, 91.)

Steer Performance when Rotationally Grazing Alfalfa or High-Tannin (HT) or Low-Tannin (LT) Sericea Lespedeza

Legume	Stocking	Gain/		
Treatment	Density	ADG	acre	Final Wt.
	Hd/ac	lbs/hd/d	lbs	
Alfalfa	1.3	2.16	475	878
HT Sericea	1.3	1.39	248	785
LT Sericea	1.2	1.65	276	840

Schmidt et al., 1987. AL Ag. Exp. St. Circular 288 (Avg. of 3 yrs)

Broad-Scope Assessment of Pasture Systems for Stockers

ALABAMA A&M AND AUBURN UNIVERSITIES

Stocker Cattle Performance and Calculated Pasture Costs

Forage Systems with Highest ADG

Rank	Forage System	ADG (lbs)
1	NE Tall Fescue w/White Clover	2.61
2	Alfalfa	2.16
3	EF Tall Fescue (≈ NE)	2.13
4	Sericea Lespedeza (cont.)	1.87
5	Orchardgrass w/Ladino	1.83
6	Orchardgrass	1.77
7	Sericea Lespedeza (rotat.)	1.65
8	Oats & Crimson Clover	1.60
9	Rye, Ryegrass & Crimson Clover	1.57
10	Tall Fescue w/Ladino Clover	1.53

High ADG # High Profitability

roduction is vanity... Profit is sanity!

9 Rye, Ryegrass & Crimson Clover 1.57

10 Tall Fescue w/Ladino Clover 1.53

Forage Systems with Lowest Cost

		Pasture Cost	
Rank	Forage System	\$/Ac	\$/lb
1	Tall fescue w/ladino	172.26	0.30
2	Orchardgrass w/ladino	172.08	0.30
3	Tall fescue w/BF trefoil 173.28 0.44		0.44
4	Bermudagrass w/h. vetch 230.75 0.47		0.47
5	Sericea lespedeza (cont.)	148.84	0.49
6	Sericea lespedeza (rotat.)	148.84	0.54
7	Sericea lespedeza (cont.)	148.84	0.60
8	Rye & ryegrass	318.34	0.60
9	Bermudagrass (hybrid) w/rye	328.35	0.62
10	Rye, oats & crimson clover	352.78	0.65

Source: Ball and Prevatt (2009).

Low Cost ≠ High Profitability

You get what you pay for! (Usually.)

O Barrijagrass W/r/e III 52839 I 0.62

Source: Ball and Prevatt (2009)

rage Systems with Highest Profitability

all ue + over

Rank	Forage System
- 1	Tall fescue w/ladino
2	Orchardgrass w/ladino
- 3	Bermudagrass (Hybrid) + 320 lbs N
4	Rye, ryegrass & crimson clover —
5	Bermudagrass w/vetch
6	Rye & ryegrass
7	EF Tall Fescue (≈ NE)
8	Bermudagrass w/rye
9	Bermudagrass (Hybrid) + 160 lbs N
10	Oats & crimson clover

NE Tall fescue

Verify by using the costs per acre and estimates of gain

THE SEVEN LOWEST PASTURE COSTS/LB OF GAIN INVOLVED LEGUMES

4 OF THE TOP 5 MOST PROFITABLE FORAGE OPTIONS USE LEGUMES EXTENSIVELY!!!

QUESTIONS?

www.georgiaforages.com 1-800-ASK-UGA1

